数据对齐
我们可以计算两个DataFrame的加和,pandas会自动将这两个DataFrame进行数据对齐,如果对不上的数据会被置为Nan(not a number)。
首先我们来创建两个DataFrame:
import numpy as np
import pandas as pd
df1 = pd.DataFrame(np.arange(9).reshape((3, 3)), columns=list('abc'), index=['1', '2', '3'])
df2 = pd.DataFrame(np.arange(12).reshape((4, 3)), columns=list('abd'), index=['2', '3', '4', '5'])
得到的结果和我们设想的一致,其实只是通过numpy数组创建DataFrame,然后指定index和columns而已,这应该算是很基础的用法了。
然后我们将两个DataFrame相加,会得到:
我们发现pandas将两个DataFrame加起来合并了之后,凡是没有在两个DataFrame都出现的位置就会被置为Nan。这其实是很有道理的,实际上不只是加法,我们可以计算两个DataFrame的加减乘除的四则运算都是可以的。如果是计算两个DataFrame相除的话,那么除了对应不上的数据会被置为Nan之外,除零这个行为也会导致异常值的发生(可能不一定是Nan,而是inf)。
fill_value
如果我们要对两个DataFrame进行运算,那么我们当然不会希望出现空值。这个时候就需要对空值进行填充了,我们直接使用运算符进行运算是没办法传递参数进行填充的,这个时候我们需要使用DataFrame当中为我们提供的算术方法。
DataFrame当中常用的运算符有这么几种:
add、sub、div这些我们都很好理解,那么这里的radd、rsub方法又是什么意思呢,为什么前面要加上一个r呢?
看起来费解,但是说白了一文不值,radd是用来翻转参数的。举个例子,比如说我们希望得到DataFrame当中所有元素的倒数,我们可以写成1 / df。由于1本身并不是一个DataFrame,所以我们不能用1来呼叫DataFrame当中的方法,也就不能传递参数,为了解决这种情况,我们可以把1 / df写成df.rdiv(1),这样我们就可以在其中传递参数了。
由于在算除法的过程当中发生了除零,所以我们得到了一个inf,它表示无穷大。
我们可以在add、div这些方法当中传入一个fill_value的参数,这个参数可以在计算之前对于一边出现缺失值的情况进行填充。也就是说对于对于只在一个DataFrame中缺失的位置会被替换成我们指定的值,如果在两个DataFrame都缺失,那么依然还会是Nan。
我们对比下结果就能发现了,相加之后的(1, d), (4, c)以及(5, c)的位置都是Nan,因为df1和df2两个DataFrame当中这些位置都是空值,所以没有被填充。
fill_value这个参数在很多api当中都有出现,比如reindex等,用法都是一样的,我们在查阅api文档的时候可以注意一下。
那么对于这种填充了之后还出现的空值我们应该怎么办呢?难道只能手动找到这些位置进行填充吗?当然是不现实的,pandas当中还为我们提供了专门解决空值的api。
空值api
在填充空值之前,我们首先要做的是发现空值。针对这个问题,我们有isna这个api,它会返回一个bool型的DataFrame,DataFrame当中的每一个位置表示了原DataFrame对应的位置是否是空值。
其他原文见 http://cache.baiducontent.com/c?m=Ftzii47pdYoAScmnpv8Lz5_bFHwFMVJGKxWOBjDmtioigFyu8dpCuTq09PZB4xJgkH1glZ-vX83lQXusYkW3K2s0TDGyMRfx5GFL3Pv98kUyieDmPhei-Q_C9r51cBtayv_FO0GOl4ZP0ppsvsr1VMJtdomimzgxqTRosejX_OS3ZzLW2t7SH_QHeUEQ7g5FcImyi-Ij-E7_xQJYyochk_&p=83769a4796934ead18b1d71252&newp=8b2a9714cd9d5ff108e2962a5153d8224216ed683ec3864e1290c408d23f061d4862e9bf24281503d0c6786602ad4b5eebf43c7123454df6cc8a871d81edc333719679&s=cfcd208495d565ef&user=baidu&fm=sc&query=dataframe+%CF%E0%BC%D3%CA%B1%BF%D5%D6%B5%B4%A6%C0%ED&qid=cc6ca74700046fe6&p1=5
发表评论 取消回复